Real-time Operating System:
A real-time operating system (RTOS) is an operating system that guarantees a certain capability within a specified time constraint. For example, an operating system might be designed to ensure that a certain object was available for a robot on an assembly line. In what is usually called a "hard" real-time operating system, if the calculation could not be performed for making the object available at the designated time, the operating system would terminate with a failure. In a "soft" real-time operating system, the assembly line would continue to function but the production output might be lower as objects failed to appear at their designated time, causing the robot to be temporarily unproductive.
In general, real-time operating systems are said to require:
- Multitasking
- Process threads that can be prioritized.
- A sufficient number of interrupt levels.
Real-time operating systems are often required in small embedded operating systems that are packaged as part of microdevices. Some kernels can be considered to meet the requirements of a real-time operating system. However, since other components, such as device drivers, are also usually needed for a particular solution, a real-time operating system is usually larger than just the kernel.
Single-user, single-tasking operating system:
As the name implies, this operating system is designed to manage the computer so that one user can effectively do one thing at a time. The Palm O.S. for Palm handheld computers is a good example of a modern single-user, single-task operating system.
Single-user, multi-tasking operating system:
This is the type of operating system most people use on there desktop and laptop computers today. Windows 98 and the Mac O.S. are both examples of an operating system that will let a single user has several programs in operation at the same time. For example, it's entirely possible for a Windows user to be writing a note in a word processor while downloading a file from the Internet while printing the text of an e-mail message.
Multi-user operating systems:
A multi-user operating system allows many different users to take advantage of the computer's resources simultaneously. The operating system must make sure that the requirements of the various users are balanced, and that each of the programs they are using has sufficient and separate resources so that a problem with one user doesn't affect the entire community of users. Unix, VMS, and mainframe operating systems, such as MVS, are examples of multi-user operating systems. It's important to differentiate here between multi-user operating systems and single-user operating systems that support networking. Windows 2000 and Novell Netware can each support hundreds or thousands of networked users, but the operating systems themselves aren't true multi-user operating systems. The system administrator is the only user for Windows 2000 or Netware. The network support and the entire remote user logins the network enables are, in the overall plan of the operating system, a program being run by the administrative user.
0 comments:
Post a Comment